|
| 1: |
|
filter(cons(X,Y),0,M) |
→ cons(0,n__filter(activate(Y),M,M)) |
| 2: |
|
filter(cons(X,Y),s(N),M) |
→ cons(X,n__filter(activate(Y),N,M)) |
| 3: |
|
sieve(cons(0,Y)) |
→ cons(0,n__sieve(activate(Y))) |
| 4: |
|
sieve(cons(s(N),Y)) |
→ cons(s(N),n__sieve(n__filter(activate(Y),N,N))) |
| 5: |
|
nats(N) |
→ cons(N,n__nats(n__s(N))) |
| 6: |
|
zprimes |
→ sieve(nats(s(s(0)))) |
| 7: |
|
filter(X1,X2,X3) |
→ n__filter(X1,X2,X3) |
| 8: |
|
sieve(X) |
→ n__sieve(X) |
| 9: |
|
nats(X) |
→ n__nats(X) |
| 10: |
|
s(X) |
→ n__s(X) |
| 11: |
|
activate(n__filter(X1,X2,X3)) |
→ filter(activate(X1),activate(X2),activate(X3)) |
| 12: |
|
activate(n__sieve(X)) |
→ sieve(activate(X)) |
| 13: |
|
activate(n__nats(X)) |
→ nats(activate(X)) |
| 14: |
|
activate(n__s(X)) |
→ s(activate(X)) |
| 15: |
|
activate(X) |
→ X |
|
There are 18 dependency pairs:
|
| 16: |
|
FILTER(cons(X,Y),0,M) |
→ ACTIVATE(Y) |
| 17: |
|
FILTER(cons(X,Y),s(N),M) |
→ ACTIVATE(Y) |
| 18: |
|
SIEVE(cons(0,Y)) |
→ ACTIVATE(Y) |
| 19: |
|
SIEVE(cons(s(N),Y)) |
→ ACTIVATE(Y) |
| 20: |
|
ZPRIMES |
→ SIEVE(nats(s(s(0)))) |
| 21: |
|
ZPRIMES |
→ NATS(s(s(0))) |
| 22: |
|
ZPRIMES |
→ S(s(0)) |
| 23: |
|
ZPRIMES |
→ S(0) |
| 24: |
|
ACTIVATE(n__filter(X1,X2,X3)) |
→ FILTER(activate(X1),activate(X2),activate(X3)) |
| 25: |
|
ACTIVATE(n__filter(X1,X2,X3)) |
→ ACTIVATE(X1) |
| 26: |
|
ACTIVATE(n__filter(X1,X2,X3)) |
→ ACTIVATE(X2) |
| 27: |
|
ACTIVATE(n__filter(X1,X2,X3)) |
→ ACTIVATE(X3) |
| 28: |
|
ACTIVATE(n__sieve(X)) |
→ SIEVE(activate(X)) |
| 29: |
|
ACTIVATE(n__sieve(X)) |
→ ACTIVATE(X) |
| 30: |
|
ACTIVATE(n__nats(X)) |
→ NATS(activate(X)) |
| 31: |
|
ACTIVATE(n__nats(X)) |
→ ACTIVATE(X) |
| 32: |
|
ACTIVATE(n__s(X)) |
→ S(activate(X)) |
| 33: |
|
ACTIVATE(n__s(X)) |
→ ACTIVATE(X) |
|
The approximated dependency graph contains one SCC:
{16-19,24-29,31,33}.